Gravitaxis of asymmetric self-propelled colloidal particles.
نویسندگان
چکیده
Many motile microorganisms adjust their swimming motion relative to the gravitational field and thus counteract sedimentation to the ground. This gravitactic behaviour is often the result of an inhomogeneous mass distribution, which aligns the microorganism similar to a buoy. However, it has been suggested that gravitaxis can also result from a geometric fore-rear asymmetry, typical for many self-propelling organisms. Despite several attempts, no conclusive evidence for such an asymmetry-induced gravitactic motion exists. Here, we study the motion of asymmetric self-propelled colloidal particles which have a homogeneous mass density and a well-defined shape. In experiments and by theoretical modelling, we demonstrate that a shape anisotropy alone is sufficient to induce gravitactic motion with either preferential upward or downward swimming. In addition, also trochoid-like trajectories transversal to the direction of gravity are observed.
منابع مشابه
Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles.
We study experimentally and numerically a (quasi-)two-dimensional colloidal suspension of self-propelled spherical particles. The particles are carbon-coated Janus particles, which are propelled due to diffusiophoresis in a near-critical water-lutidine mixture. At low densities, we find that the driving stabilizes small clusters. At higher densities, the suspension undergoes a phase separation ...
متن کاملEnzymatically active microspheres for self-propelled colloidal engines
.......................................................................................................................................... 2 Acknowledgments ........................................................................................................................... 3 List of Tables ......................................................................................................
متن کاملCircular motion of asymmetric self-propelling particles.
Micron-sized self-propelled (active) particles can be considered as model systems for characterizing more complex biological organisms like swimming bacteria or motile cells. We produce asymmetric microswimmers by soft lithography and study their circular motion on a substrate and near channel boundaries. Our experimental observations are in full agreement with a theory of Brownian dynamics for...
متن کاملHydrodynamic simulations of self-phoretic microswimmers.
A mesoscopic hydrodynamic model to simulate synthetic self-propelled Janus particles which is thermophoretically or diffusiophoretically driven is here developed. We first propose a model for a passive colloidal sphere which reproduces the correct rotational dynamics together with strong phoretic effect. This colloid solution model employs a multiparticle collision dynamics description of the s...
متن کاملCrystallization in a dense suspension of self-propelled particles.
Using Brownian dynamics computer simulations, we show that a two-dimensional suspension of self-propelled ("active") colloidal particles crystallizes at sufficiently high densities. Compared to the equilibrium freezing of passive particles, the freezing density is both significantly shifted and depends on the structural or dynamical criterion employed. In nonequilibrium the transition is accomp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature communications
دوره 5 شماره
صفحات -
تاریخ انتشار 2014